Analysis of Variance (ANOVA)

IS381 - Statistics and Probability with R

Jason Bryer, Ph.D.

November 17, 2025

One Minute Paper Results

What was the most important thing you learned during this class?

proportion

What important question remains unanswered for you?

question

Analysis of Variance (ANOVA)

The goal of ANOVA is to test whether there is a discernible difference between the means of several groups.

Hand Washing Example

Is there a difference between washing hands with: water only, regular soap, antibacterial soap (ABS), and antibacterial spray (AS)?

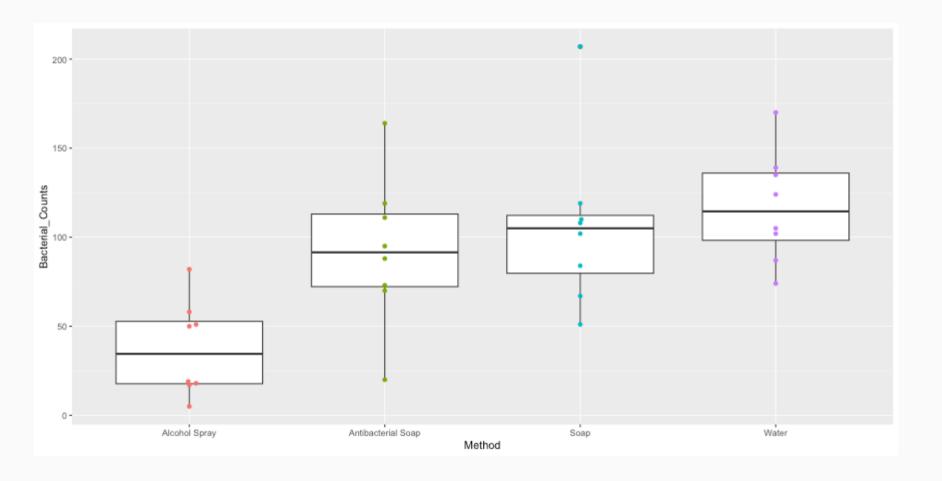
- Each tested with 8 replications
- Treatments randomly assigned

For ANOVA:

- The means all differ.
- Is this just natural variability?
- Null hypothesis: All the means are the same.
- Alternative hypothesis: The means are not all the same.

Boxplot

```
ggplot(hand_washing, aes(x = Method, y = Bacterial_Counts)) + geom_boxplot() +
    geom_beeswarm(aes(color = Method)) + theme(legend.position = 'none')
```



Descriptive Statistics

```
desc <- psych::describeBy(hand_washing$Bacterial_Counts, group = hand_washing$Method, mat = TRUE, skew = FALSE)</pre>
names(desc)[2] <- 'Method' # Rename the grouping column</pre>
desc$Var <- desc$sd^2 # We will need the variance latter, so calculate it here</pre>
desc
       item
                        Method vars n mean
                                                  sd median min max range
                                                                                           Var
                Alcohol Spray 1 8 37.5 26.55991
## X11
                                                                       77 9.390345 705.4286
## X12
         2 Antibacterial Soap
                                1 8 92.5 41.96257
                                                       91.5 20 164
                                                                      144 14.836008 1760.8571
## X13
                         Soap 1 8 106.0 46.95895 105.0 51 207
                                                                      156 16.602496 2205.1429
                        Water
                                  1 8 117.0 31.13106 114.5 74 170
                                                                       96 11.006492 969.1429
## X14
          4
( k <- length(unique(hand_washing$Method)) )</pre>
                                                                   ( grand_mean <- mean(hand_washing$Bacterial_Counts) )</pre>
                                                                   ## [1] 88.25
## [1] 4
```

```
## [1] 4

( n <- nrow(hand_washing) )

## [1] 32</pre>
```

```
( grand_mean <- mean(hand_washing$Bacterial_Counts) )

## [1] 88.25

( grand_var <- var(hand_washing$Bacterial_Counts) )

## [1] 2237.613

( pooled_var <- mean(desc$Var) )

## [1] 1410.143</pre>
5 / 2
```

Contrasts

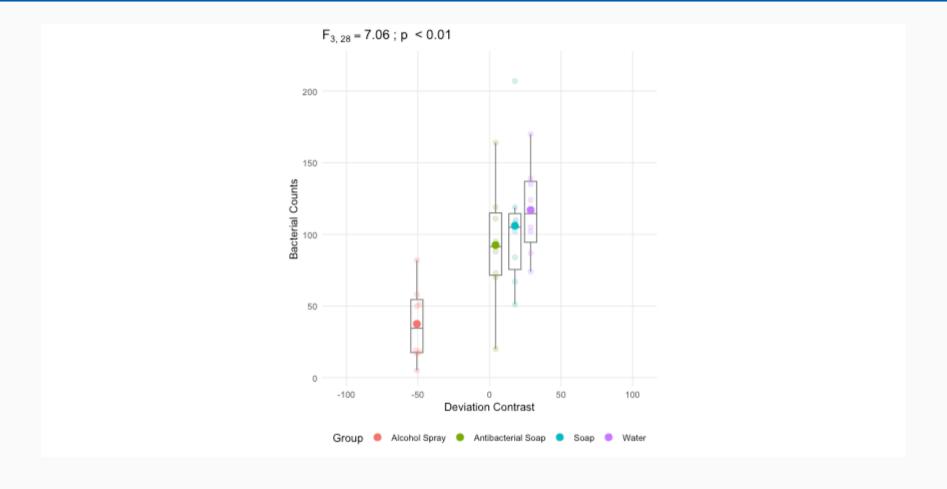
A contrast is a linear combination of two or more factor level means with coefficients that sum to zero.

```
desc$contrast <- (desc$mean - mean(desc$mean))
mean(desc$contrast) # Should be 0!
## [1] 0</pre>
```

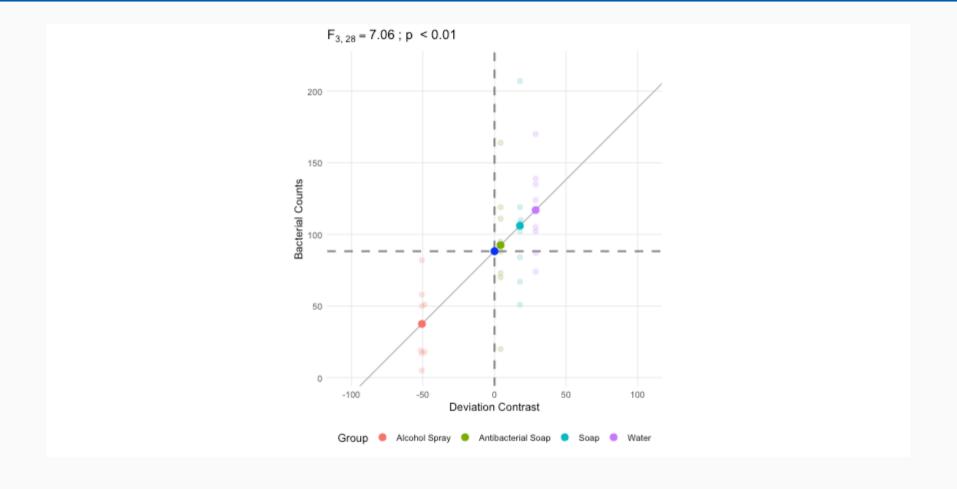
desc

```
Method vars n mean
                                             sd median min max range
##
      item
                                                                                  Var contrast
                                                                          se
## X11
               Alcohol Spray
                            1 8
                                  37.5 26.55991
                                                 34.5
                                                                   9.390345 705.4286
                                                                                       -50.75
## X12
        2 Antibacterial Soap 1 8
                                  92.5 41.96257 91.5
                                                       20 164
                                                              144 14.836008 1760.8571 4.25
## X13
                            1 8 106.0 46.95895 105.0
                                                                                       17.75
                       Soap
                                                       51 207
                                                              156 16.602496 2205.1429
## X14
                      Water 1 8 117.0 31.13106 114.5 74 170
                                                                                       28.75
        4
                                                              96 11.006492 969.1429
```

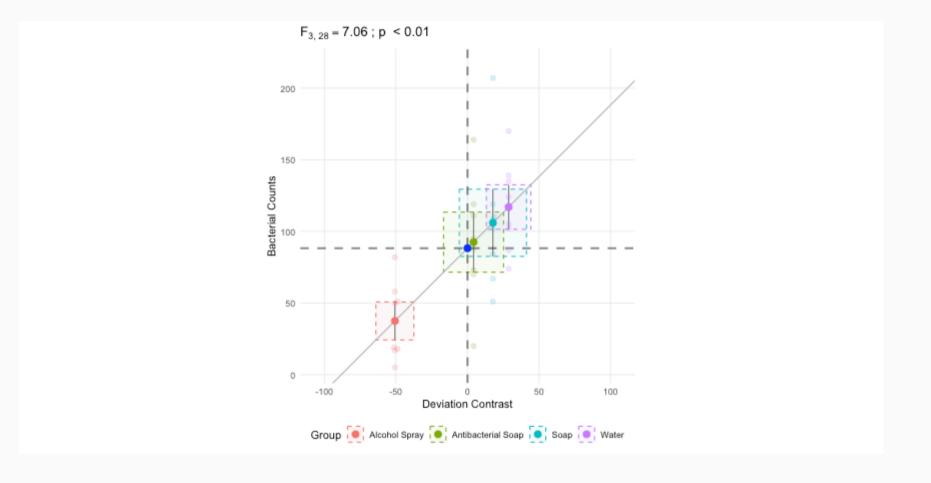
Plotting using contrasts

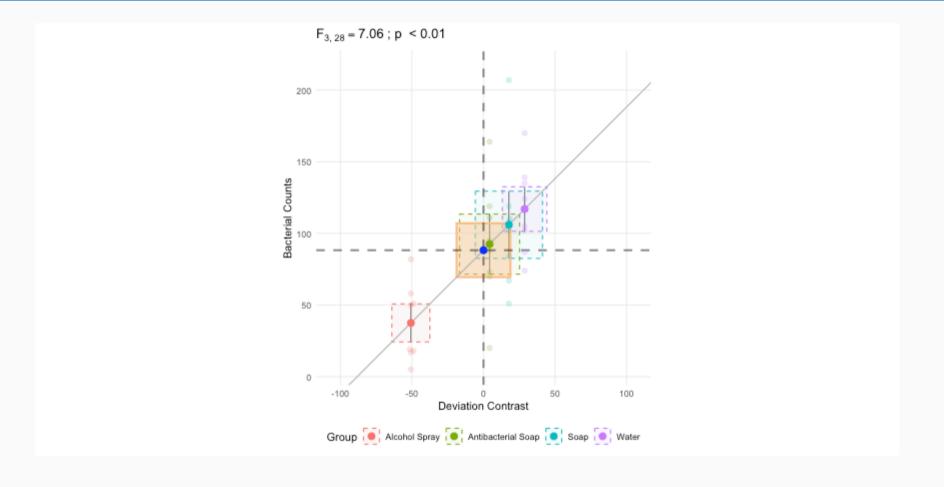


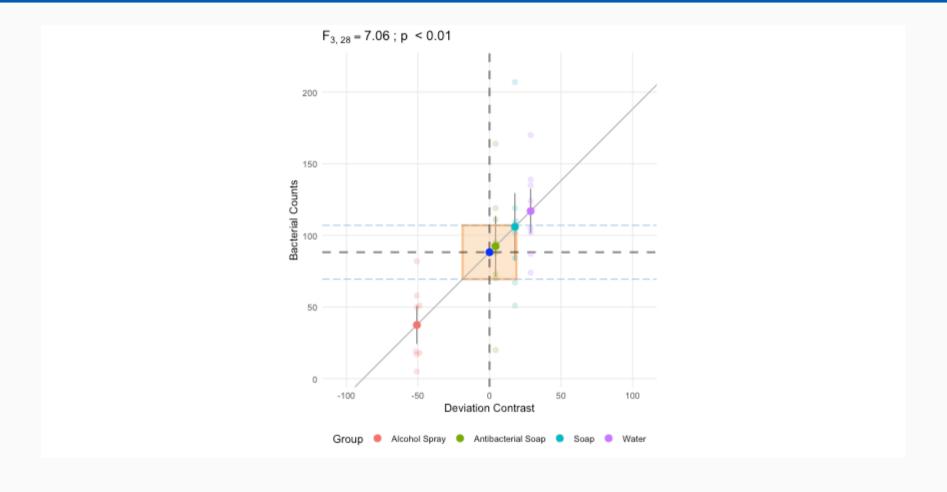
Grade Mean and Unit Line (slope = 1, intercept = \bar{x})



$$SS_{within} = \sum_k \sum_i (ar{x}_{ik} - ar{x}_k)^2$$



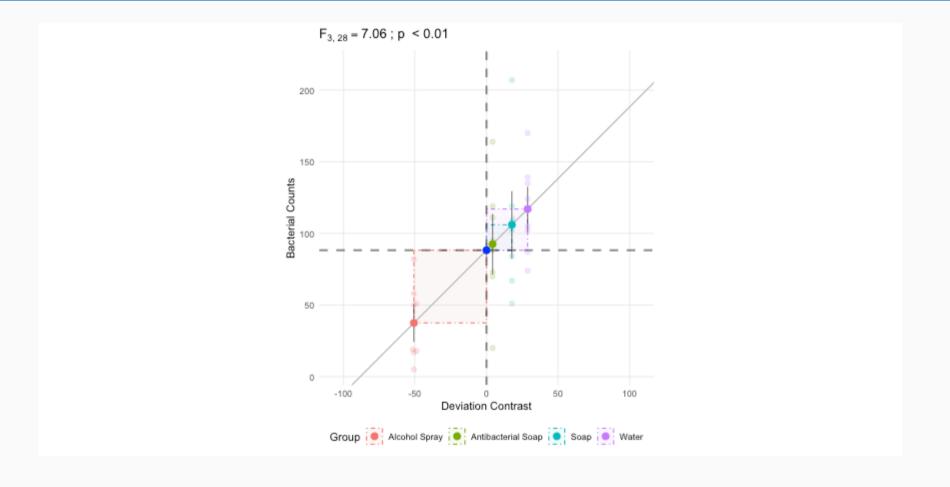




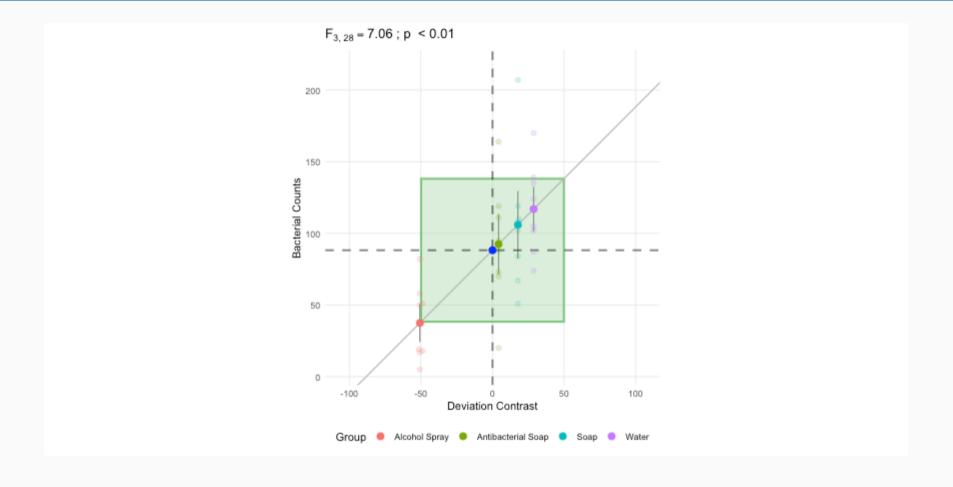
Between Group Variance

$$SS_{between} = \sum_k n_k (ar{x}_k - ar{x})^2$$

Between Group Variance



Between Group Variance

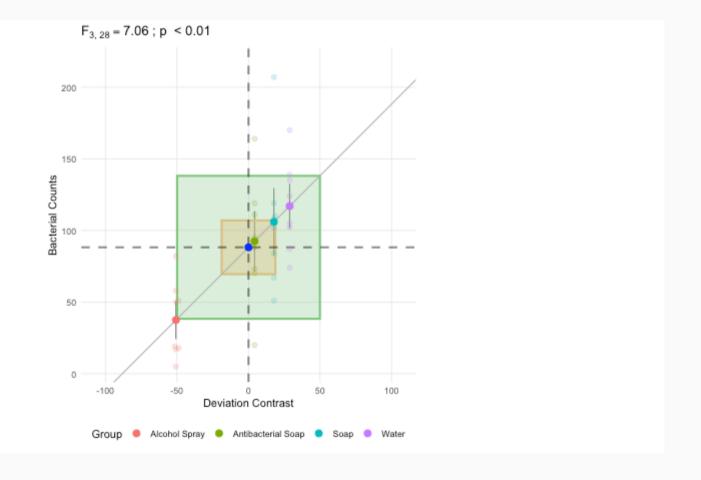


Mean Square

Source	Sum of Squares	df	MS
Between Group (Treatment)	$\sum_k n_k (ar{x}_k - ar{x})^2$	k - 1	$rac{SS_{between}}{df_{between}}$
Within Group (Error)	$\sum_k \sum_i (ar{x}_{ik} - ar{x}_k)^2$	n - k	$rac{SS_{within}}{df_{within}}$
Total	$\sum_n (x_n - ar{x})^2$	n - 1	

$\overline{MS_{Between}/MS_{Within}}$ = F-Statistic

Mean squares can be represented as squares, hence the ratio of area of the two rectagles is equal to $\frac{MS_{Between}}{MS_{Within}}$ which is the F-statistic.



Washing type all the same?

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

Variance components we need to evaluate the null hypothesis:

- Between Sum of Squares: $SS_{between} = \sum_k n_k (ar{x}_k ar{x})^2$
- ullet Within Sum of Squares: $SS_{within} = \sum_k \sum_i (ar{x}_{ik} ar{x}_k)^2$
- ullet Between degrees of freedom: $df_{between}=k-1$ (k = number of groups)
- ullet Within degrees of freedom: $df_{within}=k(n-1)$
- ullet Mean square between (aka treatment): $MS_T=rac{SS_{between}}{df_{between}}$
- ullet Mean square within (aka error): $MS_E=rac{SS_{within}}{df_{within}}$

Comparing $\overline{MS_T}$ (between) and $\overline{MS_E}$ (within)

Assume each washing method has the same variance.

Then we can pool them all together to get the pooled variance \boldsymbol{s}_p^2

Since the sample sizes are all equal, we can average the four variances: $s_p^2=1410.14\,$

mean(desc\$Var)

[1] 1410.143

MS_T

- ullet Estimates s_p^2 if H_0 is true
- ullet Should be larger than s_p^2 if H_0 is false

MS_E

- ullet Estimates s_p^2 whether H_0 is true or not
- ullet If H_0 is true, both close to s_p^2 , so MS_T is close to MS_E

Comparing

- ullet If H_0 is true, $rac{MS_T}{MS_E}$ should be close to 1
- If H_0 is false, $rac{Mar{S}_T}{MS_E}$ tends to be > 1

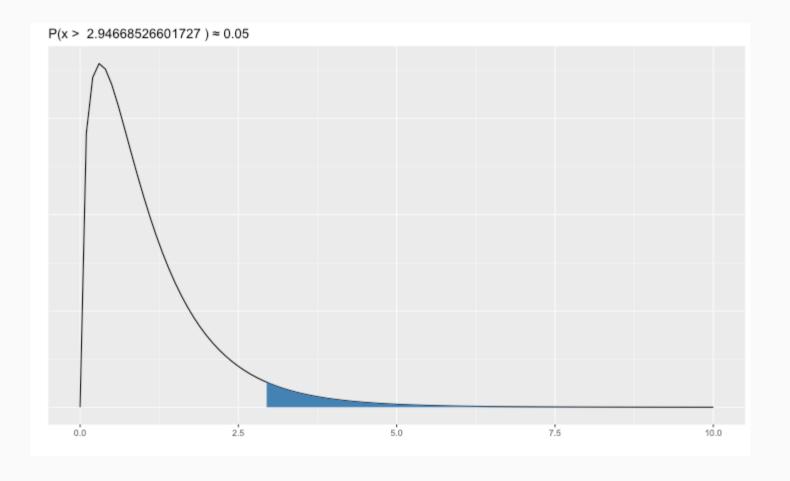
The F-Distribution

- How do we tell whether $\frac{MS_T}{MS_E}$ is larger enough to not be due just to random chance?
- $\frac{MS_T}{MS_E}$ follows the F-Distribution
 - Numerator df: k 1 (k = number of groups)
 - Denominator df: k(n 1)
 - n = # observations in each group
- ullet $F=rac{MS_T}{MS_E}$ is called the F-Statistic.

A Shiny App by Dr. Dudek to explore the F-Distribution:

The F-Distribution (cont.)

```
df.numerator <- 4 - 1
df.denominator <- 4 * (8 - 1)
DATA606::F_plot(df.numerator, df.denominator, cv = qf(0.95, df.numerator, df.denominator))</pre>
```



ANOVA Table

Source	Sum of Squares	df	MS	F	р
Between Group (Treatment)	$\sum_k n_k (ar{x}_k - ar{x})^2$	k - 1	$rac{SS_{between}}{df_{between}}$	$rac{MS_{between}}{MS_{within}}$	area to right of $F_{k-1,n-k}$
Within Group (Error)	$\sum_k \sum_i (ar{x}_{ik} - ar{x}_k)^2$	n - k	$rac{SS_{within}}{df_{within}}$		
Total	$\sum_n (x_n - ar{x})^2$	n - 1			

```
aov(Bacterial_Counts ~ Method, data = hand_washing) |> summary()
```

```
## Method 3 29882 9961 7.064 0.00111 **

## Residuals 28 39484 1410

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Assumptions and Conditions

- To check the assumptions and conditions for ANOVA, always look at the side-by-side boxplots.
 - Check for outliers within any group.
 - Check for similar spreads.
 - Look for skewness.
 - Consider re-expressing.
- Independence Assumption
 - Groups must be independent of each other.
 - Data within each group must be independent.
 - Randomization Condition
- Equal Variance Assumption
 - In ANOVA, we pool the variances. This requires equal variances from each group: Similar Spread Condition.

More Information

ANOVA Vignette in the VisualStats package:

https://jbryer.github.io/VisualStats/articles/anova.html

The plots were created using the VisualStats::anova_vis() function.

Shiny app:

```
# remotes::install_github('jbryer/VisualStats')
library(VisualStats)
VisualStats::anova_shiny()
```

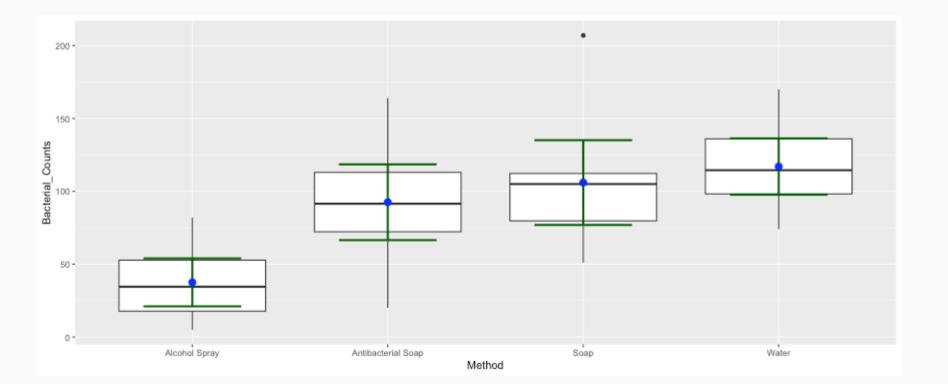
What Next?

- P-value large -> Nothing left to say
- P-value small -> Which means are large and which means are small?
- We can perform a t-test to compare two of them.
- We assumed the standard deviations are all equal.
- Use s_p , for pooled standard deviations.
- Use the Students t-model, df = N k.
- If we wanted to do a t-test for each pair:
 - ∘ P(Type I Error) = 0.05 for each test.
 - Good chance at least one will have a Type I error.

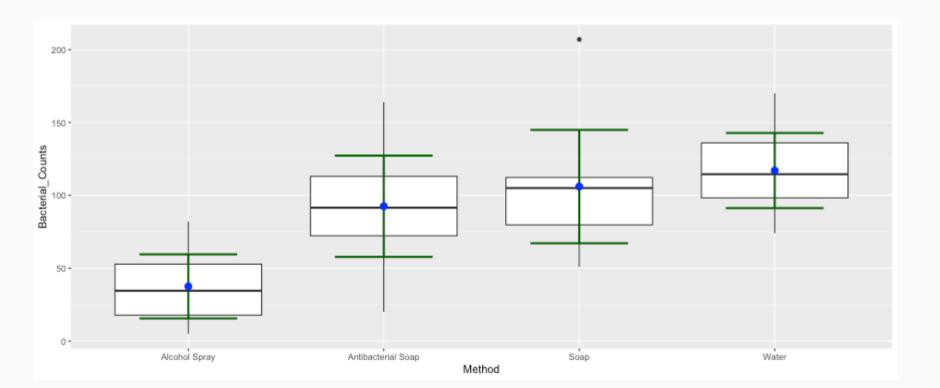
Bonferroni to the rescue!

- \circ Adjust a to lpha/J where J is the number of comparisons.
- \circ 95% confidence (1 0.05) with 3 comparisons adjusts to (1-0.05/3)pprox 0.98333.
- Use this adjusted value to find t**.

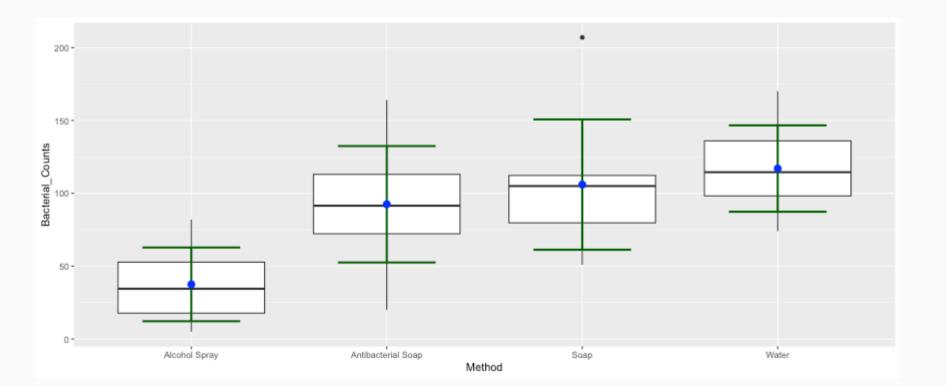
Multiple Comparisons (no Bonferroni adjustment)



Multiple Comparisons (3 paired tests)



Multiple Comparisons (6 paired tests)



One Minute Paper

- 1. What was the most important thing you learned during this class?
- 2. What important question remains unanswered for you?

https://forms.gle/N8WjTAysfKbGLptLA

